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Anovel approach to extrasolar-planet imaging uses a pair of satellites: a telescope and an occulter, where the latter

is placed in the line of sight between the telescope and the star system to be imaged in order to enhance the telescope’s

imaging capability. The optimal configuration of this satellite formation around sun–Earth L2 halo orbits is studied.

Trajectory optimization of the occultermotion between imaging sessions of different stars is performed using a range

of different criteria and methods. Thus, the global optimization problem is transformed into a time-dependent

traveling salesman problem. The time-dependent traveling salesman problem is augmentedwith various constraints

that arrive from the mission, and this problem is solved by employing simulated annealing and branching

algorithms. For a concrete understanding of the feasibility of themission, the performance of an example spacecraft,

the Small Missions for Advanced Research in Technology (SMART-1), is analyzed.

I. Introduction

I T IS likely that the next decade will see NASA launch the first
mission to detect, image, and characterize extrasolar Earth-like

planets. Current work is directed at studying a variety of architecture
concepts and the associated optical engineering in order to prove the
feasibility of a mission. The challenges in such a mission are many;
chief among them is creating the necessary high contrast to image an
Earth-like planet despite its small angular separation and its 10�10

intensity ratio relative to the host star. Many approaches have been
proposed to achieve the needed contrast employing either separated
satellite interferometers, coronagraphs internal to a large telescope,
or external occulters, where a large screen is flown far from the
telescope to block the incoming starlight (see, e.g., Beckwith [1] for a
summary). While all have much the same scientific potential, they
differ greatly in their technological challenges. While internal
coronagraphs only need a single filled aperture telescope, they
require complex wavefront control systems to compensate for the
inevitable optical distortions. External occulters are appealing
because they remove the starlight from the telescope completely,
eliminating the need for wavefront control. However, they add the
challenge of precisely manufacturing the occulter and flying it in
formationwith the telescope. In this paper, an occulter-basedmission
scenario and study optimal approaches to an observing program are
examined.

An occulter is a large, opaque screen, tens of meters in diameter,
flown 50,000 km or more from a conventional telescope, anywhere
from 2 to 4 m in diameter or larger; the arrangement is schematically
shown in Fig. 1. Such a concept for planet finding was first proposed
by Spitzer [2] using an apodized screen and later again by Marchal
[3] employing shaped projections around the edges. Since then, a
number of proposals have been put forward employing apodized
screens (Copi and Starkman [4] and Schultz et al. [5]) or, more
recently, shaped occulters as shown in Fig. 1 (Simmons [6], Cash
et al. [7], and Kasdin et al. [8]). Vanderbei et al. [9] describe how the

shape of the occulter can be optimized to achieve the needed
suppression at the smallest possible size and separation from the
telescope.

Most mission concepts consist of flying a large telescope in a halo
orbit about the sun–Earth L2 point (for details about the dynamics
around L2, see Kolemen et al. [10]) with the large occulter flying in
formation along the line of sight (LOS) to each target star, as shown in
Fig. 2 (see Cash et al. [11]). In this paper, the alignment control
problem is not discussed. Rather, approaches for determining the
transfer trajectory of the occulter from one target star to another and
for building a complete mission scenario for a particular population
of targets is studied. The objective is to enable the imaging of the
largest possible number of planetary systems while minimizing the
total mass of the occulter spacecraft (dry mass and fuel). As more
control is used, scientific achievement (that is, the number of
planetary systems that are imaged) is higher but so is the cost due to
thruster weight and fuel consumption. The results described in this
paper enable a trade study, incorporating different thrusters and
imaging different star systems, in terms of cost and scientific
achievement.

The control problem can be separated into two parts: the LOS
control of the formation during imaging and the trajectory control for
realignment between imaging sessions. Since fuel use is dominated
by the realignment, the study was focused there to find estimates of
the total fuel consumption. First, the optimal control problem for a
given realignment is solved. This provides the optimal trajectories
that take the occulter from a given star LOS to another LOS.
Employing Euler–Lagrange, sequential quadratic programming
(SQP) and shooting algorithms, the energy, time, and fuel-optimal
control for continuous thrusters were obtained. The results of each
method are then compared.

After finding the relevant minimum-fuel trajectories between all
pairs of target stars, the sequencing and timing of the imaging session
is examined in order to minimize global fuel consumption. To keep
the analysis tractable, the time spent during an imaging session is
ignored, and thus the natural dynamics that occurs. The error doing
so is small since the realignment time is expected to be so much
longer than the imaging time. While it may be possible to use the
natural dynamics during an imaging session to find slightly lower
cost trajectories for realignment, that makes the optimization
considerably more complex, and this is not considered in this paper.

Once the individual optimal trajectories are found, the global
problem is formulated by incorporating the constraints imposed by
the telescopy requirements. The resulting problem becomes a
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dynamic time-dependent traveling salesman problem (TDTSP) with
dynamical constraints. The simulated annealing and branching
heuristic methods were used to solve it. The resulting global solution
gives an approximate Delta-V budget for different configurations,
which is useful for a trade study of various spacecraft control systems
and strategies, as well as target selection.

For a concrete understanding of the feasibility of the mission,
possible mission scenarios using current technology were
investigated. To this end, possible missions with the capabilities of
an example spacecraft, the SmallMissions for AdvancedResearch in
Technology (SMART-1), were simulated and analyzed. The number
of star systems that can be imaged, the performance index used in this
study, under different conditions is quantified and compared.

II. Finding the Optimal Trajectories

In this section, the optimal control of the realignment maneuver is
examined, which entails finding the trajectory that takes the occulter
from a given star LOS to another star LOS. The diffractive optics
problem described inVanderbei et al. [9] prescribes that the telescope
and occulter separation be fixed for all observations. This fixes the
position of the occulter to be on a sphere around the telescope, the
specific location depending upon the chosen target star. The re-
alignment problem then becomes one offinding an optimal trajectory
between two two-dimensional surfaces (the initial separation from
the previous observation and the new location for the next
observation), as shown in Fig. 3. The scientific objective is to image
the greatest number of star systems in the minimum amount of time.
This objective leads to two possible optimizations. First, the
optimization of the trajectories for minimum fuel consumption,
which would increase the number of target stars that can be imaged
with a given fuel budget. Second, finding the time-optimal trajec-
tories that would allow imaging of themaximum number of stars in a
given mission lifetime.

There are two approaches in use for trajectory optimization: the
Euler–Lagrange formulation and direct optimization. Direct
optimization simply discretizes the entire problem using appropriate
numerical approximation techniques and then formulates a large
nonlinear program. The Euler–Lagrange approach involves solving
the two-point boundary value problem associated with an appro-
priate dynamic programming formulation. Both methods are

discussed, and examples are provided for each. Nevertheless, while
the direct optimization can be more robust and is gaining favor, it
involves much more computation. Since, for the global mission
optimization, hundreds of thousands of these optimal trajectories
must be found, computational efficiency is a major concern.
Therefore, the Euler–Lagrange formulation was selected for the
global opti-
mization. Unfortunately, random initial conditions did not give
convergent results for the Euler–Lagrange formulation of the
minimum-fuel and minimum-time problem. Therefore, a stepwise
approach for obtaining good initial guesses was adopted. First, the
unconstrained minimum-energy problem was solved. While this is
not themost physicallymeaningful of the cost functions, its quadratic
naturemakes it easier to solve and it provided good starting values for
the other optimizations. Using the solution of this problem as an
initial guess, the second, harder, more realistic problem was solved
by adding a constraint on the maximum thrust. The solution of this
problem gave sufficiently close initial guesses to solve the
constrained minimum-fuel and minimum-time problems.

Fig. 1 Occulter-based extrasolar planet-finding mission diagram (data available at http://newworlds.colorado.edu/starshade/index.htm, retrieved
21 April 2011).

Fig. 2 Schematic diagram of occulter mission orbits projected onto the ecliptic plane [11].

Fig. 3 Sphere of possible occulter locations about the telescope at two
times and example optimal trajectories connecting them.
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Depending on the type of thruster the mission uses, either
continuous or discrete control might be needed. Since for this
mission themost probable devices areHall-type thrusters,which give
access to continuous, lowmagnitude thrust throughout the trajectory,
only the continuous thrust optimizations were studied. For all the
control algorithms developed in this section, it is assumed that there
is a single thruster that can be instantaneously aligned toward any
direction of choice.

A. Problem Setup

The stars to be observed were taken from the list of the most
suitable 100 stars for the terrestrial planet finder coronagraph (TPF-
C) mission [12]. Then, the astrometrical data from the Hipparcos
astronomical catalog [13] were used. The Naval Observatory Vector
Astrometry Software routines developed by Kaplan et al. [14] were
used to convert and update the exact star locations of the target stars
relative to the solar system, starting arbitrarily from 1 January 2010.
For high-fidelity simulations, the capability to use the full nonlinear
solar system model based on the Jet Propulsion Laboratory DE-406
ephemeris [15] for differential equationswas developed.However, in
the analysis to follow, the circularly restricted three-body problem
(CRTBP) simplifiedmodel is used for the dynamics, and a uniformly
rotating star model is employed for the star locations for faster
calculations.

During the imaging of a given planetary system, the telescope and
the occulter must remain aligned to the LOS of the star position,
requiring that the velocities of the telescope and occulter with respect
to a reference frame aligned to the star bematched. For the time scales
of interest, the stars are well approximated as stationary with respect
to a frame fixed to the solar system barycenter (i.e., proper motion is
ignored in this analysis). Thus, a barycentric inertial frame is defined
located at the solar system barycenter with z axis perpendicular to the
ecliptic, x axis pointed along the line of equinoxes, and y axis
completing a right-hand set.

As mentioned, to simplify the dynamics, the CRTBP is used in
which only the sun and the Earth as the two primaries are considered
(with masses m1 and m2, respectively), approximate their common
orbit as circular, and treat the satellites (telescope and occulter) as
massless. The rotating synodical frame R is defined to be located at
the center of mass of the two primaries, with the z axis also
perpendicular to the ecliptic and x axis along the sun–Earth line
directed from m1 to m2. The y axis completes the right-handed set.
Normalizing the distances such that the distance between the
primaries is 1, and normalizing time such that the period of the
circular motion about the center of mass is 2�, the equations of
motion of the state vector x� fx; y; z; _x; _y; _zg for either massless
body can be written as

_x� f�x� �

_x
_y
_z

2_y� @ �U
@x
� ux

�2_x� @ �U
@y
� uy

@ �U
@z
� uz

0
BBBBBBB@

1
CCCCCCCA

(1)

where ��m2=�m1 �m2�; the shorthand notation �_� is used for the
time derivative of a scalar; ux, uy, and uz are the components of the

thrust accelerations; and the effective potential �U�x; y; z� is

�U�x; y; z� � 1 � �
k r1 k

� �

k r2 k
� x

2 � y2
2

(2)

For astronomically simplifiedmodels around sun–Earth L2, better
results are obtainedwhen theEarth/moon system is treated as a single
planet with the center of mass at the Earth/moon barycenter than
when the effect of the moon is ignored in the model. Thus, here,
�� 3:040423398444176 � 10�6 constant for the (Earth/moon
Barycenter)–sun system [16] was used with r1, r2 as the position of
the spacecraft with respect to the sun and the Earth–moon barycenter.

The CRTBP is characterized by a nonstiff and smooth set of
ordinary differential equations. For nonstiff problems, an explicit
numerical integration technique achieves the desired accuracy with
minimal computational costs. Additionally, for smooth ordinary
differential equations (ODEs), higher-order integration methods
can be employed, which further reduces the computation time.
Thus, to numerically propagate the initial state variables, an explicit
seventh-order Runge–Kutta method was used. The method
integrates a system of ODEs using seventh-order Dorman and
Prince formulas [17] and uses the eighth-order results for adapting
the step size.

For ease of comparison, all the missions scenarios discussed
assume a base halo orbit aroundL2with an out-of-plane amplitude of
500,000 km.

B. Optimal Control Problem Formulation

The optimal control problem is to find the time history of the
controls ux�t�, uy�t�, and uz�t� during a transfer to minimize some
performance index: in our case, either fuel use or time. As described
in the Introduction, two standard computational techniques are
employed: The Euler–Lagrange (indirect) method or the SQP
(direct) approach. The Euler–Lagrange approach is described
thoroughly in Bryson andHo [18]. It finds the optimal trajectory x�t�
and control u�t� that minimizes an integral cost on the state and
control subject to the constraints that they satisfy the equations of
motion in Eq. (1). The final trajectories for the state and adjoint are
given as the solution of a two-point boundary value problem. The
main advantage of using the Euler–Lagrange formulation is that the
optimality of the solution can be checked, and the computational
effort for solving the boundary value problem (BVP) using shooting
or collocation methods will be minimal if a feasible solution can be
found. The main disadvantage of this formulation is that it may be
difficult to generate sufficiently good initial guesses for the adjoint
states to ensure convergence to even a local solution.

The second approach to solving the optimization problem is to
discretize the integral cost and the trajectory and solve a high-
dimensional nonlinear optimization problem via an appropriate
nonlinear optimization algorithm. Since there are no intermediate
steps, such as the introduction of the adjoint state, involved in
solving the problem, numerical methods that employ nonlinear
programming algorithms to solve the discretized optimal control
problem are called direct. An overview of direct methods is given in
Gill et al. [19] and references therein. One of the most efficient and
promising methods currently in use is the SQP algorithm. The SQP
algorithm is a generalization of Newton’smethod for unconstrained
optimization in that it finds a step away from the current point by
minimizing a quadratic model of the problem. The SQP algorithm
replaces the objective function with a quadratic approximation
and replaces the constraint functions by linear approximations.
A more detailed overview of the SQP method can be found at
Gill et al. [19].

IPOPT [20], an open-source interior point method SQP-solver
software, was used in this study. To minimize the time it takes to
convert the optimal control problem to a form that can be used with
the direct method, an automated symbolic softwarewas created. This
algorithm discretizes the optimal control problem, which is defined
effortlessly in MATLAB. It then symbolically converts the problem
to the formneeded by the SQP solver. This code is then converted and
compiled in FORTRAN,which ismuch faster thanMATLAB. These
compiled functions are in a form that can be called from within a
MATLAB script (see MATLAB’s “mex”‡ utility for more infor-
mation). This enables solving the problem without leaving the
convenience of theMATLAB environment while benefiting from the
speed of the FORTRAN’s fast compiler. The software allows for a
choice between many different discretization methods, such as
Runge–Kutta, Euler, and trapezoidal, in order to suit the needs of the
specific problem.

‡Data available at http://www.mathworks.com/support/tech-notes/1600/
1605.html [retrieved 5 January 2007].
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C. Optimization of the Realignment Maneuver

In this section, both optimization approaches to find both the
minimum-fuel and minimum-time trajectories and control for a
single realignment maneuver are used. Unfortunately, it was
observed that starting with no prior knowledge resulted in both
problems being infeasible; it was necessary to use another technique
to find trajectories close to the optimal ones. Therefore, first, the
easier unconstrained and constrained minimum-energy problems
were solved to find initial guesses for the minimum-time and
minimum-fuel optimizations.

In every case, it is assumed that the control variable is the
acceleration of the spacecraft due to the force applied by the thrusters
throughout its trajectory u� �d2x=dt2�thruster. Then, the effect of the
control can be added to the normal control-free Newtonian equations
such that

_x� fctr�t;x;u� (3)

where

f ctr�t;x;u� � f�t;x� � f0; 0; 0; ux; uy; uzgT (4)

and where the control vector u is defined as u� fux; uy; uzgT .

1. Unconstrained Minimum-Energy Optimization

In the minimum-energy optimization, our aim is to minimize a
quadratic integral of the control effort

J�
Z
tf

t0

1

2
uTu dt (5)

While this is not the most physically meaningful of the cost
functions, because it is quadratic, it is easier to solve and is thus useful
for finding starting values for the other optimizations. The
Hamiltonian for this optimal control problem is

H�t;x;�;u� � 1

2
u � u� �Tf�t;x� � pTu (6)

where �� f�1; �2; �3; �4; �5; �6gT is the adjoint vector, and the
intermediate variable p is the last three elements of the adjoint vector
p� f�4; �5; �6gT (see Bryson and Ho [18] for details of the Euler–
Lagrange formulation).

In this section, the point-to-point optimal control is considered,
where both the initial and final states are fixed a priori:

 �tf� � x�tf� � xf � 0 (7)

Solving the optimality condition

0 � @H�t;x;�;u�
@u

(8)

the control is obtained as follows:

u ��p (9)

Substituting for u in the Euler–Lagrange equations, a 12 state
ODE in terms of the state and adjoint state only is obtained:

_x� f�t;x;��; _���
�
@f�t;x;��

@x

�
T

� (10)

with the 12 boundary conditions

x�t0� � x0

x�tf� � xf

� �
� 0 (11)

the problem becomes a BVP. This problem is solvedwith collocation
where the differential equation part is converted to discrete relation-
ships along the trajectory via Simpson’s formula for the quadrature,
and then these constraints are augmented with boundary conditions.
The resulting high-dimensional nonlinear equation is solved using
Newton’s method, following Kierzenka and Shampine’s bvp4c

implementation [21]. The same collocation method is used
throughout this paper.

Tomake sure that this solution is indeed an optimal solution of the
problem, it is checked that the Legendre–Clebsch and Weierstrass
conditions are satisfied:

@2H�t;x;u;��
@u2

� I > 0 (12)

For the case of transfer from a star LOS to another, the occulter-to-
telescope distance R of 50,000 km is used. The time of flight is
chosen to be two weeks, which is a representative slew time for the
mission under study. It is assumed that the telescope is on a halo orbit
and that the first star the occulter–telescope formation looks at is in
the direction given by the unit vector ê0, while the second star to be
imaged is in the direction of the unit vector ê1. The exact numerical
values used in the example to follow are

ê 0 �
6:324555320336759 � 10�1

�6:324555320336759 � 10�1

4:472135954999580 � 10�1

0
@

1
A; ê1 �

0

0

1

0
@

1
A (13)

so that the angle between the unit vector is 63 deg. The target star and
occulter positions are obtained from the unit vectors as

r occ � rtel � Rê (14)

where rocc and rtel are the position of the occulter and the telescope
with respect to the synodical frame origin, respectively. The
velocities are obtained based on the requirement that the inertial
velocities of both the telescope and the occulter be the same:

v occ � vtel �! � Rê (15)

where vocc and vtel are thevelocity of the occulter and the telescope in
the synodical frame, respectively, and !� f0; 0; 1gT is the angular
velocity of the CTRBP. Thus, the numerical values in the normalized
synodical units for the BVP algorithm are

x0 �

1:008708480181499 � 100

5:219658053604695 � 10�3

1:494719120781122 � 10�4

3:123278717913480 � 10�3

2:077725728577118 � 10�3

6:483432393011172 � 10�3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

xf �

1:009397510830226 � 100

5:341370714348193 � 10�3

1:843136365772625 � 10�3

3:951895067977367 � 10�3

�2:937081366176431 � 10�3

5:838803068471303 � 10�3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(16)

Figure 4 shows the optimal trajectory of the occulter relative to the
telescope on the halo orbit. Figure 5 shows the optimal control
throughout the trajectory. In the figure, the magnitude of control is
shown on the left and the components obtained via direct and indirect
methods are shown on the right. In the figure, the line is the Euler–
Lagrange BVP solution, while the black crosses are the direction
solution. Both solutions are in general agreement; the BVP solution
is more accurate because of the finer grid resolution.

2. Constrained Minimum-Energy Optimization

Next, the minimum-energy problem is refined by constraining the
maximum control force available. Apart from the different cost
function, the constrained minimum-energy problem is mathemati-
cally the same as the time and fuel optimization problems. This
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similarity enables the solution of this problem to be used as the initial
guess for the time and fuel optimization problems described in the
following two sections.

The magnitude of the control vector juj is constrained to be less
than a specified limit umax, such that juj< umax. The augmented
Hamiltonian for the optimal control problem can be written as

Haug�t;x;�;u� �
1

2
uTu� �Tf�t;x� � pTu

� �effceff�u�
�
�eff � 0 if ceff�u�< 0

�eff � 0 if ceff�u� � 0
(17)

where ceff�u� is the inequality constraint function effective on the
boundary

ceff�u� � uTu � u2max 	 0 (18)

and �eff is the corresponding Lagrange multiplier.
Since ceff is only a function of u, the adjoint differential equations

are not altered. However, the condition for control optimality
becomes

0 � @H
@u

T

�
�
u� p; ceff < 0

u� p� 2�effu; ceff � 0
(19)

Solving the first part of the equation givesu��p, as before. The
second part asks that the following two equations be satisfied:

u �� p

1� 2�eff

and juj � umax (20)

which are solved to give

u �
umax

p

jpj (21)

To decide which sign the control should take, the Pontryagin’s
minimum principle (See Kirk for details [22]) is used, which states
that the optimal control u� in the set of feasible controls U is

u ��t� � argfmin
u�t�2U

H�t;x;u;��g (22)

Looking at the part of the Hamiltonian with control influence, the
following inequality is obtained:

1
2
u�Tu� � p�Tu� 	 1

2
uTu� p�Tu (23)

where the superscript f�g denotes the optimal elements. Now it
becomes apparent that the correct choice of the sign is minus. This
defines the optimal control as

u �
��p if jpj 	 umax

�umax
p
jpj if jpj> umax

(24)

Substituting for u in the Euler Lagrange equations, a 12 deg ODE
is obtained in terms of the state and adjoint state only:

_x� f�t;x;�� _���
�
@f�t;x;��

@x

�
T

� (25)

with boundary conditions

x�t0� � x0

x�tf� � xf

� �
� 0 (26)

While solving the constrained optimization problem for the
realignmentmaneuver, the samex0 andxf given inEq. (16) in the last
section are used, and the initial guess for the BVP is set to the
solutions from the last section. Figure 6 shows themagnitude and the
components of the optimal control history throughout the trajectory
for an example thrust constrained optimization. In the figure, the

0 2 4 6 8 10 12 14
0

2

4

Time (days)

X
 (

A
U

x1
0−

4 )

0 2 4 6 8 10 12 14

−2

0

Time (days)

Y
(A

U
x1

0−
4 )

0 2 4 6 8 10 12 14

2

4

Time (days)

Z
(A

U
x1

0−
4 )

Fig. 4 Trajectory of the occulter relative to the telescope for an energy-

optimal realignment maneuver.
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Fig. 5 Optimal minimum-energy control effort for the realignment maneuver shown in Fig. 4.
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magnitude of control is shown on the left and the components
obtained via direct and indirectmethods are shownon the right. In the
figure, the line is the Euler–Lagrange BVP solution, while the black
crosses are the direct solution. Both solutions are in general
agreement. In this example, umax is set to 1:6 � 10�4 m=s2.

3. Minimum-Time Optimization

Now the realignment between two targets in minimum time under
a maximum thrust constraint is considered. In this case, the aim is to
go from a point in phase space to another point in the minimum
amount of time. The cost function thus becomes

J�
Z
tf

t0

1 dt (27)

Since the minimum-time solution dictates that the maximum
control be employed at all times, the problem is simplified by
redefining the control:

u � umaxû (28)

Now there is a new constraint that needs to be satisfied throughout
the trajectory:

û T û� 1 (29)

This constraint is included in the Hamiltonian by augmenting it with
additional Lagrange multipliers �:

H � 1� �Tf�x� � umaxpû� ��ûTû � 1� (30)

While the augmentation does not affect the adjoint differential
equation, the optimality condition becomes

0� @H
@û
� umaxp� �û (31)

Thus, the optimal control û can be obtained by solving this
equation along with constraint equation (29):

u �
�
�umax

p
jpj if jpj ≠ 0

undetermined if p� 0
(32)

Previously, the optimality condition and Pontryagin’s minimum
principlewere used to determineu��t� for all time t 2 �t0; tf  in terms
of the extremal states x� and adjoint states ��. If, however, there is a
time interval �t1; t2 of finite duration during which this principle
provides no information about the optimal control, then the problem
is called singular and the interval �t1; t2 is called the singular interval.

To determine whether it is possible to have singular intervals, the
case where p is zero for a finite time interval is considered. This
condition implies that derivatives of all orders of p should be zero
during that time interval. In other words,

dkp

dtk
� 0 k� 1; 2; . . . (33)

Writing the differential equation forp from the adjoint statesODE,

_p�
��1 � 2p2

��2 � 2p1

��3

0
@

1
A (34)

it is observed that the singularity condition leads to �� 0. However,
for the open-end-time problem under study, there is another
boundary condition. The Hamiltonian for the open-end-time prob-
lems, where it is not an explicit function of time, is equal to zero at all
times (see Stengel [23] for details). Therefore, for the CRTBP where
H is not an explicit function of time,

H � 0 (35)

For the singular intervals, �� 0. Substituting this equality in the
Hamiltonian, H � 1 is obtained, which leads to a contradiction.
Thus, there cannot be singular intervals for this minimum-time
optimization problem.

Substituting for û in the Euler–Lagrange equations, a 12 degODE
in terms of the state and adjoint state only is obtained:

_x� f�t;x;�� _���
�
@f�x;��
@x

�
T

� (36)

with boundary conditions

H
x�t0� � x0

x�tf� � xf

0
@

1
A� 0 (37)

To apply numerical methods to solve this problem, the time
boundaries for the BVP must be defined explicitly. However, in this
case, the time interval is [0, tf], where the end time for the BVP tf is
an unknown parameter. To overcome this problem, the system is
redefined on the fixed-time interval [0, 1] by rewriting the equation in
terms of a new time variable:

� � t

tf
(38)

Introducing tf as a new state variable, the extended differential
equation becomes
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Fig. 6 Example of optimal minimum-energy control with thrust constrained to 1:6 � 10�4 m=s2.
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dx

d�
� tff��;x;u�

d�

d�
��tf

�
@f��;x;��

@x

�
T

�
dtf
d�
� 0

(39)

Now the 13-dimensional BVP can be solved.
The requirement for realignment is that, at the final time, the

occulter must be positioned to look at a prespecified star with the
inertial direction ê. Recall that, at different times, the position and
velocity of the occulter are given by

r occ � rtel � Rê (40)

v occ � vtel �! � Rê (41)

Thus, before knowing the time to go, the position of the telescope
and, as a consequence, the final position of the occulter xf cannot be
specified. This problem can be solved in twoways. The first option is
to change the time-independent final time constraint to

 �tf� � �T� where �� rocc � �rtel � Rê�
vocc � �vtel �! � Rê�

� �
(42)

This changes the 13th boundary condition H�tf� � 0 to

H�tf� �
@ �tf�
@t
� 0 (43)

However, due to the time-dependent nature of the boundary
condition, it is difficult to solve this BVP. Instead, an iterated
approach to solving the target-chasing minimum-time problem is
employed. First, the tf is estimated and then the equations of motion
are integrated to find the location of the telescope and the star at that
time. From the LOS requirement, xf is obtained and then the time-
independent version of the problem is solved. After obtaining the
minimum time to go,xf is calculated and the optimization is repeated
with the new final position constraint. The iteration continued until
the difference between the estimate and the tf from the optimization
was negligible. In this case, two to three iterations were adequate.
Figure 7 shows the time-optimal trajectories for three scenarios and
the control components for one of them. In the figure, the light gray
line is the Euler–Lagrange BVP solution, while the black crosses are

the direct solution. The direct method finds smaller time-to-go values
due to its higher resolution.

4. Minimum-Fuel Optimization

In the fuel-optimal problem, the aim is to find the control history
that takes the spacecraft to the predefined final position in a given
time tf while keeping the final mass m�tf� as high as possible. The
mass of a spacecraft at a given time t can be determined by the
relationship

m�t� �m0 � _mt (44)

where _m is the constant propellant flow rate andm0 is the mass of the
spacecraft at the initial time. Assuming that the total change in the
mass throughout the trajectory is negligible, Newton’s second law of
motion can be written as

jujm0 � _mVex=b (45)

and it follows that

m�tf� �m0

�
1 �

tfjuj
Vex=b

�
(46)

whereVex=b is thevelocity of exhaustwith respect to the body andu is
the inertial acceleration due to spacecraft propulsion: the control
input that has been used throughout this section. The velocity of the
exhaust depends on the specifications of the spacecraft thruster.

The constant mass approximation is a very good one for the LOS
realignment maneuver since such maneuvers take at most a few
weeks.With this approximation, maximizing finalmass is equivalent
tominimizing themagnitude of the control throughout the trajectory.
For this case, the cost function is

J�
Z
tf

t0

juj dt (47)

The Hamiltonian for the control problem becomes

H�t;x;�;u� � juj � �Tf�t;x� � pTu (48)
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Fig. 7 Sample of trajectories of occulter relative to the telescope for the time-optimal control for different umax (left). Components of an example time-

optimal control with thrust constrained to 3:0 � 10�4 m=s2 obtained via direct and indirect methods, shown with solid lines and black crosses,

respectively (right).
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Pontryagin’s minimum principle states that the optimal control is

u ��t� � argfmin
u�t�2U

H�t;x;u;��g (49)

Looking at the part of the Hamiltonian with control influence, the
following inequality is obtained:

ju�j � p�Tu� 	 juj � p�Tu (50)

where the superscript f�g denotes the optimal elements. Along
with the inequality constraint juj< umax, the optimal control is
obtained as

u �

8<
:
0 if jpj< 1

�umax
p
jpj if jpj> 1

undetermined if jpj � 1

(51)

It is important to now determine whether the undetermined case
leads to singular control. To prove or disprove whether singular
control exists in the nonlinear case is very difficult. Therefore, the
linear case is studied in order to gain insight into the nonlinear
solution.

To prove that no singular control intervals exist for the realignment
maneuver, differential equation (1) is linearized to

_x� Ax� Bu (52)

For this problem, it can be shown thatA is nonsingular and that the
controllability matrix

C � �B AB A2B . . . An�1B  (53)

where n is the dimension of the system, is of full rank n. It is known
that, for a nonsingular system with complete controllability, the
system does not have singular solutions (see Kirk [22] for details).
Thus, the control law for the linearized system does not have singular
arcs and is given by

u �
�
0 if jpj< 1

�umax
p
jpj if jpj � 1

(54)

Next, the Euler–Lagrange solution to the optimal control problem
is derived assuming that the linear analysis extends to the nonlinear
case. Following this derivation, these results are compared with the
direct method, which does not make any assumption about
singularity, and it is shown that the resultsmatch numerically. Thus, it
is concluded that the nonsingularity assumption is correct based on
the linear analysis and numerical comparison.

Substituting foru in the Euler–Lagrange equations, a 12 degODE
is obtained in terms of the state and adjoint state only:

_x� f�t;x;�� _���
�
@f�x;��
@x

�
T

� (55)

with boundary conditions

x�t0� � x0

x�tf� � xf

� �
� 0 (56)

For the slew from one target to another, a backward shooting
approach is obtained. Good initial conditions are crucial for the
shooting method based on the Euler–Lagrange equations. The
solution from the constrained minimum-energy optimization section
is used as the initial guess for the adjoint variables at final time �f .
Integrating the 12-dimensional differential equation, the root-finding
problem becomes:

� �t0 � tf; �xf;�f� � x0 � 0 (57)

Successive iteration gives the value of the �f in a few iterations.
Figure 8 shows a sample fuel-optimal trajectory, where the relative
trajectory of the occulter with respect to the telescope on the halo
orbit is plotted. The bang-off-bang structure for the J�

R
juj type of

optimization can be seen in Fig. 9, where the magnitude and the
components of the control effort for the realignment maneuver are
shown. Figure 9 also shows that the direct method, which does not
make any assumptions about singularity, gives the same result as the
indirect method. Thus, it is concluded that optimal control is
nonsingular.

D. Result: Trajectory Optimization for SMART-1 as an Occulter

In this section, a specific spacecraft, SMART-1, is used to compute
example minimum-fuel and minimum-time trajectories. Designed
by ESA to test continuous solar-powered ion thrusters, SMART-1
successfully left the gravitational field of Earth and reached the
mission objective of impacting themoon.§ SMART-1was chosen for
a feasibility test because its solar-powered Hall-effect thrusters may
be good candidates for the occulter-based telescopy mission under
study. Using the characteristics of the SMART-1 thrusters [24] (see
Table 1), the optimal trajectories between every pair of the top 100
TPF-C target stars were computed.
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Fig. 8 Trajectory of the occulter relative to the telescope for a minimum-fuel realignment maneuver.

§Data available at http://www.esa.int/SPECIALS/SMART-1 [retrieved
5 January 2007].
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The minimum realignment time between targets assuming the
maximum thrust capability of SMART-1 can be obtained for any
specific time of year andposition of the telescope on the halo orbit.An
example minimum-time surface is shown in Fig. 10. It shows that, for
the chosen SMART-1 thrusters and mass of the occulter, most
transfers occur in under two weeks. In Sec. III, these minimum-time
results are used to construct observing paths forgivenmission lengths.

A surface ofminimum-fuel trajectories for given transfer times can
also be obtained. Based on the minimum-time results, the transfer
time is fixed to two weeks and, similarly, minimum-fuel trajectories
between every pair of target stars are computed. An example
minimum-fuel surface is shown in Fig. 11, where total Delta-V is
used as a surrogate for total fuel consumption. For the sake of
reasonable display, the unreachable targets (that is, targets that
cannot be reached in two weeks even at full thrust) are shown with a
Delta-V of zero as opposed to infinity. Thus, the two regions in the
lower right and upper left corners, shown in black, represent targets
that cannot be reached within two weeks.

These two surfaces of minimum-time trajectories and minimum-
fuel trajectories provide ameans for globally optimizing themission.
By treating them as graphs, the optimal ordering of observations that
minimizes either the total mission length or the total fuel used for a
given number of observations can be investigated. This is a variant of
the traveling salesmen problem (TSP), which allows application of
the known solution approaches. In the next section, it is shownhow to
formulate the appropriate TSP and solve it for various optimal
mission scenarios that maximize the number of scientific
observations for a given mission length or fuel supply.

III. Global Optimization of the Mission:
The Traveling Salesman Problem

In this section, the previous optimal trajectory results are used to
study approaches for globally optimizing different occulter-based
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Fig. 9 Minimum-fuel control effort for the realignmentmaneuver shown in Fig. 8 (left: magnitude of control; right: components obtained via direct and

indirect methods, shown on with solid lines and black crosses, respectively).

Table 1 Specifications of the SMART-1

spacecraft

Parameter Value

Maximum thrust 68 mN
Mass ratio 0.83
Propellant mass 80 kg
Total Delta-V 3900 m=s
Isp 1640 s
Maximum acceleration 0:2 mm=s2

Full thrust lifetime 210 days
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mission scenarios. In particular, the question of which of the
trajectory optimization approaches lead to a mission that maximizes
scientific return within reasonable constraints on thruster capability,
vehicle mass, and mission constraints (such as observing directions)
is investigated. This is achieved by using the costs established for
each control strategy and each target star to form a simple graph. The
graph can then be searched for optimal mission ordering of
observations. The approach taken in this section is to fix the number
of observations and solve the two associated TDTSPs for the set of
minimum-time and minimum-fuel trajectories. If the result exceeds
the mission time or the total fuel available, the number of obser-
vations are reduced and the problem is resolved; if the result is less
then the total mission time or total fuel available, the number of
observations is increased. This procedure is repeated until a mission
scenario with the maximum number of scientific observations under
realistic constraints on the spacecraft is obtained.

A. Defining the Global Optimization Problem

The goal of the optimization is tomaximize the number of imaging
sessions for a given amount of fuel and/or mission time. This is a
difficult optimization problem to formulate and solve, so instead, a
related subprogram is solved and iterated until themaximum number
of observations are reached. The used subprograms search for the
optimal sequencing and timing of observations that minimize the
total time given the minimum-time path between each pair of stars or
that minimizes the total fuel given the minimum-fuel trajectory
between each pair. To this aim, a matrix is built where each entry is
the cost associated with the transfer between the star in row i and the
star in column j; the cost then is the sumof each entry in the tour. This
is similar to the classical TSP where the matrix of transfer costs is
referred to as the TSP matrix.

The optimal imaging problem is complicated by the presence of
constraints and the fact that the cost matrix is time varying. Since the
telescope is moving on its halo orbit and about the sun during
observations, the cost matrix changes after each observation. This is
known as a TDTSP. There also exist dynamic constraints that vary
across the mission depending on the mission time, location of the
telescope, and the past history of observations.

The first constraint is that the trajectories have to obey Newton’s
second law. This is satisfied by using the trajectories found in the
previous section. Second, the reflection of sunlight from the occulter
to the telescope interferes with the imaging of the planetary system.
This constrains the occulter to be between approximately 45 to
95 deg from the sun direction (see Fig. 12). Themission requirements
also impose other constraints on the sequencing that are not shown in
this figure. To ensure that the images of the planetary system of
interest do not produce the same results, the minimum-time between
reimaging of a target is six months.

Figure 12 graphically illustrates the TDTSP with dynamical
constraints for the occulter imaging problem. Due to reflection of the
sunlight, only the stars confined within the curved lines are
observable at the given instance. By including this constraint, the
global optimization problem is converted to the search for the best
ordering of target stars, where the Delta-Vs between the targets are
shown on the TDTSP matrix (the numbers in this figure are for
illustrative purposes only). In the figure, inaccessible stars (in this
example, these are the stars labeled as C and D) are shown as1. In
the next section, the mathematical description of the TSP is
presented, and then, how the cost function and constraints can be fit
into that formalism is explained.

B. Classical Traveling Salesman Problem

In the classical TSP, a salesmanmust visit a given number of cities,
for which the distances from one another are known, by the shortest
possible route. The salesman’s optimal path, which starts and ends in
the same city, must include all cities once and only once.

Mathematically, this problem can be formulated by using a graph.
The nodes and the arcs of this graph correspond to the cities and the
route between cities, respectively. The TSP then becomes an
assignment problemon the graph,where every node has one and only
one arc leading toward it and one and only one leading away from it.
This can be expressed by employing the variable

xij �
�
1 if arc�i; j� is in the tour;
0 otherwise

(58)

for i� 1; 2; . . . ; n and j� 1; 2; . . . ; n, and where n is the number of
cities, or in the telescopy mission case, stars to visit.

On this graph, the TSP becomes the arc length minimization
problem given below:

min
X
i;j

cijxij s:t:
X
i

xij � 1 8 j ≠ i

X
j

xij � 1 8 i ≠ j xij 2 f0; 1g 8 i; j
(59)

Here, cij are the elements of the cost matrix c. Every element of
this matrix represents the distance between two cities.

However, this formulation may not give the desired, single loop
that connects all the nodes.Multiple, unconnected loops, or subtours,
may result. To overcome this problem, additional constraints must be
added to the formulation. The Miller–Tucker–Zemlin formulation
[25], which introduces new variables ui for i� 1; . . . ; n for subtour
exclusion, is one of the most well-known formulations:

u1 � 1 2 	 ui 	 n 8 i ≠ 1

ui � uj � 1 	 �n � 1��1 � xij� 8 i ≠ 1; 8j ≠ 1
(60)

The constraint formulation given in Eq. (60) is satisfied when the
position of node i in the tour is ui.

While there exist exact solution methods for the TSP, such as
dynamic programming, the cutting-plane method, and branch-and-
boundmethods, the computation time is proportional to the exponent
of the number of cities. For thosewho are interested in exact solutions
of the TSP, CONCORDE is the current state-of-the-art software.¶

When the exact optimal solution is not necessary, heuristic
methods can be used, which quickly construct good, feasible
solutions with high probability. These methods can find solutions for
large problems consisting of millions of cities in a moderate time
spanwhile only deviating 2–3% from the optimal solution (see Gutin
and Punnen [26] for detailed experimental analysis of the heuristic
methods).

Since this study focuses on the analysis of the mission concept,
exact solutions are not necessary at this stage. In Fig. 13, a
suboptimal solution for the TSP problem for the top 100 TPF-C
targets is given. The solution was obtained using the simulated
annealing method. The numerical implementation of this heuristics
is discussed in Sec. III.C.

Fig. 12 Operating range of the occulter (left). Operation constraints shown on a sky map (center). Resultant TDTSP matrix (right).

¶Data available at http://www.tsp.gatech.edu/concorde.html [retrieved
5 January 2007].
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C. Numerical Methods Employed for Solving the Global
Optimization Problem

As discussed, the exact solution methods for the optimization
problem were not used. Instead, heuristic methods, which deviate
only a few percent from the optimal solution and quickly construct
good, feasible solutions with high probability, are employed. While
solving the classical TSP, the tabu search [27], ant colony opti-
mization [28], cross-entropy [29], genetic algorithm [30], and
simulated annealingmethods [31] were implemented. All performed
well and converged to the correct results for the test cases.

The genetic algorithm method was ruled out as a viable candidate
due to being too slow to be useful in our study. The ant colony
optimization and cross-entropy methods employ a swarm of
candidate solutions. These methods are not suitable for the problem
at hand because of the existence of a large number of constraints. As
far as the cross-entropy method is concerned, one infeasible solution
in a group would bring the statistical average of the group up, but
trying to impose the constraints on the elements is against the spirit of
the swarms of trials and averaging. As for the ant colony opti-
mization, it is not apparent how the constraint can be imposed that
prevents the same star from being revisited before a certain amount of
time.

For the fuel-optimal case, a simulated annealing method was used
rather than the tabu search method since, due to the constraints, the
optimal solution and initial feed might be in separated parts of the
search space, and randommotion given in simulated annealingmight
be of use to get out of local minima.

In the time-optimal case, the fact that the cost function cannot be
obtained beforehand complicates the employment of the annealing
method. More important, the constraints are no longer known
beforehand and instead change with each neighbor operator. As a
result, a branching algorithm was used where the constraints were
dealt with as they arose.

1. Simulated Annealing for the Fuel-Optimal Case

In Appendix B, the algorithm that was used for the simulated
annealing is explained. For this algorithm, a neighbor function has to
be defined that is an operator that converts one tour into another by
using exchanges or moves of the sequence vector. This function
defines an associated neighborhood for each tour that can be obtained
with a single function operation. Incremental improvements in the
cost function are obtained by continually moving from one neighbor
to a better one, with a lower cost. This is done by repeated use of the
neighbor function. Finally, the optimal solution is obtained when
there are no better neighbors left.

The 2-opt operation is the most famous and most tested of the
simple neighbor operator functions. The 2-opt operator removes two
edges and replaces these with two different edges that reconnect the
fragments in the reverse order. The 2-opt was the first method of
choice, but it failed to give good results. Because of the high number
of constraints involved in the problem, a constraint was broken
almost every time when a part of the sequence was reversed.

Consider that, as the simulated annealing proceeds, the energy of
the state will be lower than that of a random state. Thus, if the
neighbor function results in arbitrary states, these moves will all be

rejected after a few steps. Therefore, in simulated annealing, the
neighbor function should be chosen such that the neighbors and the
current tour have similar energy levels. Thus, as the neighbor
function, swapping of the two consecutive rather than arbitrary stars
was chosen. The notation swap�i; j� is used for the operation of
changing the places of the ith and jth elements of the X vector that
contains the visiting sequence.

Additionally, if the operator does not obey the constraints by
default, many fruitless trials result. This was avoided by choosing the
initial guess to satisfy all the constraints and by making sure that all
the neighbor perpetration satisfy the constraint. When swapping the
stars in consecutive positions, whether the swap operation leads to a
minimum distance between the pair partners, a star and its revisit
partner, of less than Nrevisit, was checked [see Eq. (A6)]. If so, the
swap is not performed and another random element i is chosen to
swap ith and �i� 1�th elements. This ensures that, as long as the
initial sequence obeys the minimum separation between pairs of less
than Nrevisit, the neighbor will also obey this constraint. By not
breaking any constraints, the algorithm is able to move through the
neighborhood quickly.

However, the neighbor function should be able to reach every
possible state of the system, and the swapping that is described above
may not ensure this property because it is done in pairs. To overcome
this problem, three more operators that enlarge the neighborhood
sufficiently were used to avoid getting stuck in local minima. These
are the following operators:

1) Swap position of two random stars and their revisit partners:
swap�ui; uj� and swap�ui�n; uj�n� .

2) Mutate visit locations of random stars: swap�ui; uj�. If the
resultant sequence gives rise to a minimum distance between the
pairs that is less than Nrevisit, the swap is not performed and another
random pair is chosen.

3) Mutate visit locations of random star revisit partners:
swap�ui�n; uj�n�. If the resultant sequence gives rise to a minimum
distance between the pairs that is less than Nrevisit, the swap is not
performed and another random pair is chosen.

These operators were used less frequently than the consecutive
pair swaps for a total of 10% of the time for each operator as opposed
to 70% for the swapping of the consecutive pairs in order to allow a
fast and efficient local search.

2. Branching for Time-Optimal Case

In the branching algorithm, all the possible moves from a given
initial star location are considered. Eachmove is the first element of a
possible visiting sequence. From all these sequences, all the possible
second elements are considered, and the algorithm proceeds in this
manner. This leads to an exponential amount of possible sequences to
be tried and stored, which is not practical. Thus, after every stage, an
elimination of some of the sequences is necessary. There are many
possible approaches to this selection. While the most obvious
approach is to eliminate the sequences with the highest cost. The
down side of this approach would be that these eliminated high-cost
sequences may in the later stages lead to better results; thus, a
diversification, as in the simulated annealing case, may be useful.
Different diversification methods were experimented with, but these
methods did not lead to better results. Thus, only the criterion of cost
was used.

When, in the end, the sequence length reaches the total imaging
sessions, the list element with the lowest cost is taken as the optimal
solution. Unfortunately, this algorithm will lead to local minima, but
the solution of the full problem is prohibitively difficult to obtain. The
advantage of this algorithm is that the constraints of sun avoidance,
minimum revisit time, and no revisit after two visits are satisfied in
the final solution with minimal computational effort.

D. Results: Performance of SMART-1 as an Occulter

A feasibility study is performed where the mission is constrained
to use the SMART-1 spacecraft with all its limitations, including the
fuel onboard and maximum thrust. In Sec. II.D, all the necessary
minimum-fuel and minimum-time trajectories for the SMART-1

Fig. 13 Traveling salesman solution to the top 100 TPF-C targets

shown on a sky map.
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spacecraft as an occulter are computed and the TSP matrices at any
given time are obtained. Now, the global optimization is examined
using these results.

It is assumed that the spacecraft continues imaging until the fuel is
depleted, which is calculated via Eq. (46). The fuel consumption is
found for an initial guess ofNmax, and this value is increased until the
fuel consumption is more than the fuel onboard, which gives the
maximum possible observations. Figure 14 shows the results that
would be obtained if a minimum-fuel strategy were employed. Here,
the maximum two revisits per star constraint were taken out because
hundreds of observations with this constraint mean that the occulter
ends up revisiting the other stars repeatedly. Since the fuel onboard is
limited, a more spendthrift fast slew approach, where the time
between the imaging sessions is decreased, leads to a decrease in the
total number of observations. The last data points at 20,000 km for
oneweek and 70,000 km for twoweeks arevery restrictive, since they
give very few options for consecutive targets. As a result, they do not
provide the flexibility that is needed in a real-life mission.

Figure 15 shows the results that would be obtained if a minimum-
time transfer strategy, which uses continuous full thrust, were
employed (see Table 1 mission). This figure shows that, as the radius
of the formation increases, the total number of imaging sessions
decreases. When this is compared with Fig. 14, it is apparent that the
minimum-time strategy trades off the speed of observations against
the total number of observations.

Even though the results from Figs. 14 and 15 should be treated as
the optimistic upper bounds for the number of possible imaging
sessions, it is apparent that, notwithstanding the difficulties, the
mission is within reach of the current technology. The Delta-V
requirements for the occulter are reasonable. With the next
generation of thrusters, it should be possible tomaneuver the approx-
imately 40-m-diam occulter to do sufficient imaging to be able tofind
Earth-like planets.

IV. Conclusions

In this paper, the optimal configuration of a satellite formation
consisting of a telescope and an occulter around sun–Earth L2 halo
orbits used for imaging extrasolar planets is studied. Trajectory
optimization of the occulter motion between imaging sessions of
different stars is performed, and the global optimization problem is
solved for missions consisting of a telescope and a single occulter
employing heuristic methods. Performance of an example space-
craft, SMART-1, as an occulter is analyzed. This study introduced a
baseline optimal mission design for the occulter-based imaging
mission and enables a tradeoff study comparing different occulter-
based approaches with one another as well as with their alternatives.

There are still many issues to overcome before a mission of this
sort can be feasible, such as designing an alignment system for the
telescope–occulter formation and designing an optical system that
can perform robustly under various deformations of the occulter due
to thermal and mechanical forces. The results show that, using
available technology and the optimal trajectories obtained in this
study, necessary thrust specifications and fuel consumption for
formation control are within the current spacecraft mission capa-
bilities. Thus, it is feasible to design an occulter-based telescopy
mission around L2 from an orbital design perspective.

Appendix A: Mathematical Formulation
of the Global Optimization Problem

In this appendix, themathematical formulation for the realignment
problem is obtained, starting from the classical TSP formulation.
There are four major differences between the classical TSP and the
realignment problem. First, the cost matrix in this case is time-
dependent due to the motion of the telescope on the halo orbit, the
change in the star directions relative to the telescope, and the
evolution of the exclusion zone. Second, additional constraints must
be satisfied. Third, the occultermay visit some of the star targetsmore
than once. And finally, the occulter does not have to visit all the
possible star targets.

The traveling occulter problem is formulated given the following
parameters: the total number of observations Ntot, the identification
number of the stars that can be imagedmore than once ir, and the slew
time between imaging sessions �t. For the sake of simplicity, it is
assumed that the maximum number of visits to any given star is two.
The results can easily be extended to the case with more than two
visits. The formulation of the problem is set such that the multiple
occulter case is obtained with minimal modification of this
formulation.

I. Cost Function

First, the cost function for the problem is definedwith only a single
measurement for each star. The time interval between each
observation �t is assumed to be constant in order to simplify the
problem. Then, ti, the time when the ith target is being imaged,
becomes �tui, which is only a function of how many observations
were conducted before the current target. Thus, the cost matrix that is
to be minimized can be expressed as

min
X
i;j

c�i; j; ui�xij (A1)

In this formulation, c�i; j; ui� is a three-dimensional matrix at each
time instance given with ui, which can be precomputed.
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Fig. 14 Total number of imaging sessions versus the radius for the fuel-
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Elements of c�i; j; ui� are the final cost of the optimal trajectories
found in the last section. At each time interval, the constraints, such
as the stars that are nonimageable due to their location relative to the
sun, are calculated. For the stars that cannot be observed at that time,
the c�i; j; ui� is set to infinity.

The sequence after themaximumvisit number should notmatter in
the total cost computation. To ensure that it is excluded, the matrix
elements of c�i; j; ui� for all ui greater than the user-specified
maximum number of total observations Ntot are set to zero:

c�i; j; ui� � 0 for ui � Ntot � 1 (A2)

Thus, the algorithm onlyminimizes cost for theDelta-V budget up
to this value and does not take into account the remaining nodes.

II. Including the Revisits into the Formulation

In this section, a method to include the option of revisiting sample
stars with identification numbers ir is introduced into the formu-
lation. As stated, it is assumed that the maximum number of imaging
of a given star is two. Higher numbers can easily be introduced into
the formulation without loss of generality.

First, the number of nodes are doubled such that each star now
corresponds to two nodes: one for the first visit and the other for the
second visit. The indices i and j are redefined to be double the size to
i� 1; 2; . . . ; 2n and j� 1; 2; . . . ; 2n, where n is the number stars. In
this notation, elements of i and j from 1 through n represent a first
visit of a target star with the identification number i or j. The elements
from n� 1 through 2n represent a second visit of a target star with
the identification number i� n or j � n. Correspondingly, the cost
matrix is redefined to be double the size:

c�i; j; ui� :�
c�i; j; ui� c�i; j; ui�
c�i; j; ui� c�i; j; ui�

� �
(A3)

If a star with identification number k is not allowed to be revisited,
the cost for a second visit is set to infinity (or a very large number):

c�k� n; :; :� �1; c�:; k� n; :� �1 (A4)

This formulation enables keeping the TSP formulation for the xij:X
i

xij � 1 8 j ≠ i
X
j

xij � 1 8 i ≠ j

xij 2 f0; 1g 8 i; j (A5)

The revisits, if they happen, should be after a certain amount of
time. For a given star with identification number i and position in the
sequence ui, its revisit partner with position ui�n should be separated
by a minimum distance:

ui � Nrevisit 	 ui�n (A6)

where n is the number of stars of interest, andNrevisit is the minimum
reimaging interval. These constraints ensure that the revisit only
happens after a certain amount of time has passed. Since the time
between each observation is assumed to be constant, ti ��tui is
only a function of how many observations were conducted before.
For example, for a realignment maneuver of two weeks, and a
minimum allowable revisit time of six months, Nrevisit � 12.

III. Full Formulation

The full formulation for the mathematical model can thus be
written as

min
X
i;j

c�i; j; ui�xij s:t:
X
i

xij � 1 8 j ≠ i

X
j

xij � 1 8 i ≠ j u1 � 1 2 	 ui 	 2n 8 i ≠ 1

ui � uj � 1 	 �2n � 1��1 � xij� 8 i ≠ 1; 8 j ≠ 1

ui � Nrevisit 	 ui�n 8 i xij 2 f0; 1g 8 i; j (A7)

where c is a precalculated three-dimensional matrix. For the
minimum-fuel problem, the elements of c are the Delta-V’s
calculated in the previous sections. Without loss of generality, u1 is
set to one, which can be changed for different starting stars.

For theminimum-time optimization problem, the elements of the c
matrix are the time to go between each target. In this case, the time
spent between each realignment is no longer a constant. The cost and
the constraints that are associated with the arc i� j are now
dependent on time ti at position ui.

The time at a given arc can be expressed as the sum of all the costs,
or the time to go, before that node:

t1 � 0

tk �
X
i;j

c�i; j; ti�xij 8 i such that ui � 1; . . . ; k � 1 and

8 j such that uj � 2; . . . ; k (A8)

Here, the indices of the stars that have already been visited must
first be identified from the elements of u. Then, the total time is
calculated by summing all the previous time intervals. The cost
function c is a continuous function of time, since the observable stars
change with time while the time is dependent upon all the previous
observations. This formulation is a much more complicated
nonlinear programming problem.

Appendix B: Simulated Annealing

Developed by Kirkpatrick et al. [31], simulated annealing is a
global optimization method suitable for problems with a large search
space. The method is inspired by the way crystalline structures are
formed in the thermal annealing process, such as the production of
high-strength steel. The analogy between the physical annealing
process and the numerical optimization is such that the temperature
change is akin to the time spent in the optimization, and the energy
level is analogous to the cost function to be minimized. Similar to the
physics of atoms under the annealing process, simulated annealing
generates random solutions in the neighborhood of the old one.
Initially, when the temperature is high (the initial stages of
optimization), randommoves that lead to higher energy (higher cost)
levels are allowed frequently, but as the system cools down
(optimization time increases), the tendency to allow moves that
increase the energy is reduced. The algorithm becomes more like a
downhill search method.

Algorithm B1 is the pseudocode for the simulated annealing
algorithm used in the global optimization problem.

In the algorithm,X is a vector that contains the visiting sequence of
each star (and visiting partners if they exist). Temperature is
represented byT, the freezing temperature is represented byTmin, and
the cooling constant is represented by �. Three functions are used in
the algorithm; random�� is a uniform-distribution random number
generator in the interval (0, 1), cost is the cost function for a given
visiting sequence, and neighbor is a function that generates random
visiting strings in the neighborhood of X.

Algorithm B1 Simulated annealing

Input: X0, Tmin, �
energy� cost�X0�
X� X0

while T > Tmin do

Xnew � neighbor�X�
energynew � cost�X�
�� energy � energynew
if � > 0 or exp��=T�> random� �, then
X� Xnew

energy� energynew
T � T � �

end if

end while
Output: X, energy
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For the constants in the algorithm, a cooling constant of�0:99 and
initial temperatures in the range of 10–40� gave good results. The
freezing temperature is set to be 1�.

As for the functions, the cost function defined in the previous
sections are used. This cost function can be rewritten in terms of X,
the visiting sequence vector, as

min
X
k

c�X�k�; X�k� 1�; k� (B1)
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